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A CONTRACTION THEOREM IN MENGER PROBABILISTIC
METRIC SPACES

S. SHAKERI1

Abstract. In this paper, we consider complete menger probabilistic quasi-
metric space and prove a common fixed point theorem for commuting maps in
this space.

1. Introduction and preliminaries

K. Menger introduced the notion of a probabilistic metric space in 1942 and
since then the theory of probabilistic metric spaces has developed in many di-
rections [4]. The idea of K. Menger was to use distribution functions instead of
nonnegative real numbers as values of the metric. The notion of a probabilistic
metric space corresponds to situations when we do not know exactly the dis-
tance between two points, but we know probabilities of possible values of this
distance. A probabilistic generalization of metric spaces appears to be interest in
the investigation of physical quantities and physiological thresholds. It is also of
fundamental importance in probabilistic functional analysis.

In the sequel, we shall adopt usual terminology, notation and conventions of
the theory of probabilistic menger metric spaces, as in [4].

Throughout this paper, the space of all probability distribution functions (briefly,
d.f.’s) denotes ∆+ = {F : R ∪ {−∞, +∞} −→ [0, 1] : F is left-continuous and
non-decreasing on R, F (0) = 0 and F (+∞) = 1} and the subset D+ ⊆ ∆+ is
the set D+ = {F ∈ ∆+ : l−F (+∞) = 1}. Here l−f(x) denotes the left limit of
the function f at the point x, l−f(x) = limt→x− f(t). The space ∆+ is partially
ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if
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F (t) ≤ G(t) for all t in R. The maximal element for ∆+ in this order is the d.f.
given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 1.1. A mapping T : [0, 1]× [0, 1] −→ [0, 1] is continuous t–norm if T
is satisfying the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and c ≤ d, and a, b, c, d ∈ [0, 1].

Two typical example of continuous t-norm are T (a, b) = ab and T (a, b) =
min(a, b).

Definition 1.2. A Menger Probabilistic Metric space (briefly, Menger PM-space)
is a triple (X,F , T ), where X is a nonempty set, T is a continuous t–norm, and
F is a mapping from X ×X into D+ such that, if Fx,y denotes the value of F at
the pair (x, y), the following conditions hold: for all x, y, z in X,

(PM1) Fx,y(t) = ε0(t) for all t > 0 if and only if x = y;

(PM2) Fx,y(t) = Fy,x(t);

(PM3) Fx,z(t + s) ≥ T (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 1.3. Let (X,F , T ) be a PM space.
(1) A sequence {pn}n in X is said to be convergent to p in X if, for every ε > 0

and λ > 0, there exists positive integer N such that Fpn,p(ε) > 1 − λ whenever
n ≥ N .

(2) A sequence {pn}n in X is called Cauchy sequence if, for every ε > 0 and
λ > 0, there exists positive integer N such that Fpn,pm(ε) > 1 − λ whenever
n ≥ m ≥ N (m ≥ n ≥ N).

(3) A PM space (X,F , T ) is said to be complete if and only if every Cauchy
sequence in X is convergent to a point in X.

Theorem 1.4. [4] If (X,F , T ) is a PM space and {pn} and {qn} are sequences
such that pn → p and qn → q, then limn→∞ Fpn,qn(t) = Fp,q(t).

Lemma 1.5. Let (X,F , T ) be a PM space. If we define Eλ,F : X2 −→ R+ ∪{0}
by

Eλ,F (x, y) = inf{t > 0 : Fx,y(t) > 1− λ}
for each λ ∈]0, 1[ and x, y ∈ X. Then we have

(i) For any µ ∈]0, 1[ there exists λ ∈]0, 1[ such that

Eµ,F (x, z) ≤ Eλ,F (x, y) + Eλ,F (y, z)

for any x, y, z ∈ X;

(ii) The sequence {xn}n∈N is convergent w.r.t. F if and only if Eλ,F (xn, x) → 0.
Also the sequence {xn}n∈N is Cauchy w.r.t. F if and only if it is Cauchy with
Eλ,F .
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Proof. For (i), by the continuity of t-norms, for every µ ∈]0, 1[ we can find a
λ ∈]0, 1[ such that

T (1− λ, 1− λ) ≥ 1− µ.

By (PM2) we have

Fx,z(Eλ,F (x, y) + Eλ,F (y, z) + 2δ)

≥ T (Fx,y(Eλ,F (x, y) + δ), Fy,z(Eλ,F (y, z) + δ))

≥ T (1− λ, 1− λ)

≥ 1− µ,

for every δ > 0, which implies that

Eµ,F (x, z) ≤ Eλ,F (x, y) + Eλ,F (y, z) + 2δ.

Since δ > 0 was arbitrary, we have

Eµ,F (x, z) ≤ Eλ,F (x, y) + Eλ,F (y, z).

For (ii), we have

Fxn,x(η) > 1− λ ⇐⇒ Eλ,F (xn, x) < η

for every η > 0. ¤

2. A common fixed point theorem for commuting maps

Theorem 2.1. Let f be a continuous mapping of a complete metric space (X, d)
into itself and let g : X −→ X be a map that satisfy the following conditions:

(a) g(X) ⊆ f(x);
(b) g commutes with f ;
(c) d(g(x), g(y)) ≤ kd(f(x), f(y)) for all x, y ∈ X and for some 0 < k < 1.

Then f and g have a unique common fixed point.

The above result has a probabilistic analogue in the following theorem.

Theorem 2.2. Let (X,F , T ) be a complete PM space and let f, g : X −→ X be
maps that satisfy the following conditions:

(a) g(X) ⊆ f(x);
(b) f is continuous;
(c) Fg(x),g(y)(kt) ≥ Ff(x),f(y)(t) for all x, y ∈ X and 0 < k < 1.

Then f and g have a unique common fixed point provided f and g commute.

Proof. Let x0 ∈ X. By (a) we can find x1 such that f(x1) = g(x0). By induc-
tion, we can define a sequence {xn}n such that f(xn) = g(xn−1). By induction
again,

Ff(xn),f(xn+1)(t) = Fg(xn−1),g(xn)(t) ≥ Ff(xn−1),f(xn)(t/k)

≥ · · · ≥ Ff(x0),f(x1)(t/k
n)
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for n = 1, 2, · · · , which implies that

Eλ,F (f(xn), f(xn+1)) = inf{t > 0 : Ff(xn),f(xn+1)(t) > 1− λ}
≤ inf{t > 0 : Ff(x0),f(x1)(t/k

n) > 1− λ}
= kn inf{t > 0 : Ff(x0),f(x1)(t) > 1− λ}
= knEλ,F (f(x0), f(x1))

for every λ ∈]0, 1[.
Now, we show that {f(xn)} is a Cauchy sequence. For every µ ∈]0, 1[, there

exists γ ∈]0, 1[ such that, for m ≥ n,

Eµ,F (f(xn), f(xm))

≤ Eγ,F (f(xm−1, f(xm)) + Eγ,F (f(xm−2), f(xm−1)) + · · ·+ Eγ,F (f(xn), f(xn+1))

≤ Eγ,F (f(x0, f(x1))
m−1∑
j=n

kJ −→ 0

as m,n −→∞. Since X is left complete, there exists y ∈ X such that limn→∞ f(xn) =
y. So g(xn−1) = f(xn) tends to y. It can be seen from (c) that the continuity of
f implies that to g.

So {g(f(xn))}n converges to g(y). However, g(f(xn)) = f(g(xn)) by the com-
mutativity of f and g. So f(g(xn)) converges to f(y). Because the limits are
unique, f(y) = g(y). So f(f(y)) = f(g(y)) by commutativity and

Fg(y),g(g(y))(t) ≥ Ff(y),f(g(y))(t/k) ≥ Fg(y),g(g(y))(t/k)

≥ · · · ≥ Fg(y),g(g(y))(t/k
n) −→ 1

as n → ∞, which implies that, g(y) = g(g(y)). Thus, g(y) = g(g(y)) = f(g(y)).
So g(y) is a common fixed point of f and g.

If y and z are two fixed points common to f and g, then

ε0(t) ≥ Fy,z(t) = Fg(y),g(z)(t) ≥ Ff(y),f(z)(t/k)

= Fy,z(t/k) · · · ≥ Fy,z(t/k
n) −→ 1.

as n →∞, which implies that, y = z. ¤
Example 2.3. Let X be the set { 1

n
: n ∈ N} ∪ {0}. Denote T (a, b) = ab for all

a, b ∈ [0, 1]. For each t ∈]0,∞[, define

Fx,y(t) =

{
t

t+|x−y| , if t > 0,

0, if t = 0.

Clearly (X,F , T ) is a complete PM space. Define g(x) = x/12 and f(x) = x/4
on X. It is evident that g(X) ⊆ f(X). Also for k = 1/3,

Fg(x),g(y)(t/3) =
t/3

t/3 + (|x− y|/12)
=

t

t + |x− y|/4 = Ff(x),f(y)(t).

Thus all the conditions of Theorem 2.2 are satisfied and f and g have the common
fixed point 0.
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